Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
World J Virol ; 12(2): 68-90, 2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2304939

ABSTRACT

The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as "immunothrombosis" that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.

2.
Front Immunol ; 14: 1129190, 2023.
Article in English | MEDLINE | ID: covidwho-2258100

ABSTRACT

Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prognosis , Cytokines , Inflammation Mediators
3.
Pathogens ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2227710

ABSTRACT

Acinetobacter baumannii (AB) has evolved over the last decades as a major problem in carbapenem-resistant gram-negative nosocomial infections, associated with high mortality rates especially in the intensive care unit (ICU). Recent reports highlight the increasing prevalence of resistance to colistin, a last resort therapeutic option for carbapenem-resistant AB. We retrospectively evaluated the characteristics, treatment regimens and outcomes of twenty patients with pan-drug resistant (PDR) AB primary bacteremia hospitalized in the ICU of the University General Hospital of Patras, during a two-year period (October 2020-September 2022). The 28-day mortality reached 50%. Between survivors and non-survivors, no differences were found regarding age, gender, and Charlson comorbidity index (CCI). However, non-survivors had higher APACHE II scores and higher prevalence of septic shock and COVID-19 infection. A significantly higher percentage in the survivor group received Fosfomycin as part of the combination regimen. Inclusion of fosfomycin in the combination therapeutic regimen was associated with significantly better survival as compared to non-fosfomycin-containing regimens. In view of the increasing prevalence of PDR-AB infections in ICUs, its associated high rates of mortality and the lack of effective treatment options, the observed survival benefit with fosfomycin inclusion in the therapeutic regimen merits further validation in larger prospective studies.

4.
Vaccines (Basel) ; 10(8)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1988049

ABSTRACT

COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia.

5.
Microorganisms ; 10(5)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1934170

ABSTRACT

A considerable proportion of patients with severe COVID-19 meet Sepsis-3 criteria and share common pathophysiological mechanisms of multiorgan injury with bacterial sepsis, in absence of secondary bacterial infections, a process characterized as "viral sepsis". The intestinal barrier exerts a central role in the pathophysiological sequence of events that lead from SARS-CoV-2 infection to severe systemic complications. Accumulating evidence suggests that SARS-CoV-2 disrupts the integrity of the biological, mechanical and immunological gut barrier. Specifically, microbiota diversity and beneficial bacteria population are reduced, concurrently with overgrowth of pathogenic bacteria (dysbiosis). Enterocytes' tight junctions (TJs) are disrupted, and the apoptotic death of intestinal epithelial cells is increased leading to increased gut permeability. In addition, mucosal CD4(+) and CD8(+) T cells, Th17 cells, neutrophils, dendritic cells and macrophages are activated, and T-regulatory cells are decreased, thus promoting an overactivated immune response, which further injures the intestinal epithelium. This dysfunctional gut barrier in SARS-CoV-2 infection permits the escape of luminal bacteria, fungi and endotoxin to normally sterile extraintestinal sites and the systemic circulation. Pre-existing gut barrier dysfunction and endotoxemia in patients with comorbidities including cardiovascular disease, obesity, diabetes and immunosuppression predisposes to aggravated endotoxemia. Bacterial and endotoxin translocation promote the systemic inflammation and immune activation, which characterize the SARS-CoV-2 induced "viral sepsis" syndrome associated with multisystemic complications of severe COVID-19.

6.
Biomedicines ; 9(8)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341647

ABSTRACT

Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitute one of the deadliest pandemics in modern history demonstrating cardiovascular, gastrointestinal, hematologic, mucocutaneous, respiratory, neurological, renal and testicular manifestations and further complications. COVID-19-induced excessive immune response accompanied with uncontrolled release of cytokines culminating in cytokine storm seem to be the common pathogenetic mechanism of these complications. The aim of this narrative review is to elucidate the relation between anaphylaxis associated with profound hypotension or hypoxemia with pro-inflammatory cytokine release. COVID-19 relation with Kounis syndrome and post-COVID-19 vaccination correlation with heparin-induced thrombocytopenia with thrombosis (HITT), especially serious cerebral venous sinus thrombosis, were also reviewed. METHODS: A current literature search in PubMed, Embase and Google databases was performed to reveal the pathophysiology, prevalence, clinical manifestation, correlation and treatment of COVID-19, anaphylaxis with profuse hypotension, Kounis acute coronary syndrome and thrombotic events post vaccination. RESULTS: The same key immunological pathophysiology mechanisms and cells seem to underlie COVID-19 cardiovascular complications and the anaphylaxis-associated Kounis syndrome. The myocardial injury in patients with COVID-19 has been attributed to coronary spasm, plaque rupture and microthrombi formation, hypoxic injury or cytokine storm disposing the same pathophysiology with the three clinical variants of Kounis syndrome. COVID-19-interrelated vaccine excipients as polysorbate, polyethelene glycol (PEG) and trometamol constitute potential allergenic substances. CONCLUSION: Better acknowledgement of the pathophysiological mechanisms, clinical similarities, multiorgan complications of COVID-19 or other viral infections as dengue and human immunodeficiency viruses along with the action of inflammatory cells inducing the Kounis syndrome could identify better immunological approaches for prevention, treatment of the COVID-19 pandemic as well as post-COVID-19 vaccine adverse reactions.

8.
Infect Dis (Lond) ; 53(11): 847-854, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286520

ABSTRACT

BACKGROUND: N-acetyl-cysteine (NAC) has been previously shown to exert beneficial effects in diverse respiratory diseases, through antioxidant and anti-inflammatory actions. Our aim was to evaluate NAC potential impact in hospitalised patients with COVID-19 pneumonia, in terms of progression to severe respiratory failure (SRF) and mortality. PATIENTS AND METHODS: This retrospective, two-centre cohort study included consecutive patients hospitalised with moderate or severe COVID-19 pneumonia. Patients who received standard of care were compared with patients who additionally received NAC 600 mg bid orally for 14 days. Patients' clinical course was recorded regarding (i) the development of SRF (PO2/FiO2 <150) requiring mechanical ventilation support and (ii) mortality at 14 and 28 days. RESULTS: A total of 82 patients were included, 42 in the NAC group and 40 in the control group. Treatment with oral NAC led to significantly lower rates of progression to SRF as compared to the control group (p < .01). Patients in the NAC group presented significantly lower 14- and 28-day mortality as compared to controls (p < .001 and p < .01 respectively). NAC treatment significantly reduced 14- and 28-day mortality in patients with severe disease (p < .001, respectively). NAC improved over time the PO2/FiO2 ratio and decreased the white blood cell, CRP, D-dimers and LDH levels. In the multivariable logistic regression analysis, non-severe illness and NAC administration were independent predictors of 28-days survival. CONCLUSION: Oral NAC administration (1200 mg/d) in patients with COVID-19 pneumonia reduces the risk for mechanical ventilation and mortality. Our findings need to be confirmed by properly designed prospective clinical trials.


Subject(s)
COVID-19 , Respiration, Artificial , Acetylcysteine/therapeutic use , Cohort Studies , Humans , Prospective Studies , Retrospective Studies , SARS-CoV-2
9.
In Vivo ; 35(4): 2483-2488, 2021.
Article in English | MEDLINE | ID: covidwho-1285631

ABSTRACT

BACKGROUND/AIM: The present study was undertaken to investigate (i) whether hospitalized patients with COVID-19 pneumonia present intestinal barrier dysfunction with consequent translocation of endotoxin into the systemic circulation and (ii) whether intestinal barrier biomarkers have any prognostic role in terms of progression to severe respiratory failure. PATIENTS AND METHODS: In this prospective study, 22 patients with COVID-19-associated pneumonia and 19 patients with non-COVID-19-related community-acquired pneumonia (CAP group) were studied while 12 healthy persons comprised the control group. Blood samples were collected on admission and analysed for serum levels of endotoxin and zonula occludens-1 (ZO1). Clinical courses regarding progression to severe respiratory failure (SRF) requiring mechanical ventilation were recorded. RESULTS: Patients with COVID-19-associated pneumonia and patients with CAP presented significantly higher serum endotoxin and ZO1 concentrations on admission as compared to healthy controls. There was no difference in endotoxin levels between patients with COVID-19-related pneumonia and patients with CAP. In patients with COVID-19-related pneumonia, serum endotoxin concentrations were positively correlated with C-reactive protein and ferritin values. There were no significant differences in serum endotoxin and ZO1 concentrations between patients with severe and not severe COVID-19-related pneumonia, nor between patients who developed SRF and those who did not Conclusion: Patients with COVID-19-related pneumonia present intestinal barrier dysfunction leading to systemic endotoxemia. Admission values of endotoxin and ZO1 do not have any prognostic role for progression to SRF.


Subject(s)
COVID-19 , Pneumonia , Biomarkers , Endotoxins , Humans , Pneumonia/complications , Prospective Studies , SARS-CoV-2 , Tight Junctions
10.
Vaccines (Basel) ; 9(3)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1129794

ABSTRACT

Vaccines constitute the most effective medications in public health as they control and prevent the spread of infectious diseases and reduce mortality. Similar to other medications, allergic reactions can occur during vaccination. While most reactions are neither frequent nor serious, anaphylactic reactions are potentially life-threatening allergic reactions that are encountered rarely, but can cause serious complications. The allergic responses caused by vaccines can stem from activation of mast cells via Fcε receptor-1 type I reaction, mediated by the interaction between immunoglobulin E (IgE) antibodies against a particular vaccine, and occur within minutes or up to four hours. The type IV allergic reactions initiate 48 h after vaccination and demonstrate their peak between 72 and 96 h. Non-IgE-mediated mast cell degranulation via activation of the complement system and via activation of the Mas-related G protein-coupled receptor X2 can also induce allergic reactions. Reactions are more often caused by inert substances, called excipients, which are added to vaccines to improve stability and absorption, increase solubility, influence palatability, or create a distinctive appearance, and not by the active vaccine itself. Polyethylene glycol, also known as macrogol, in the currently available Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines, and polysorbate 80, also known as Tween 80, in AstraZeneca and Johnson & Johnson COVID-19 vaccines, are excipients mostly incriminated for allergic reactions. This review will summarize the current state of knowledge of immediate and delayed allergic reactions in the currently available vaccines against COVID-19, together with the general and specific therapeutic considerations. These considerations include: The incidence of allergic reactions and deaths under investigation with the available vaccines, application of vaccination in patients with mast cell disease, patients who developed an allergy during the first dose, vasovagal symptoms masquerading as allergic reactions, the COVID-19 vaccination in pregnancy, deaths associated with COVID-19 vaccination, and questions arising in managing of this current ordeal. Careful vaccine-safety surveillance over time, in conjunction with the elucidation of mechanisms of adverse events across different COVID-19 vaccine platforms, will contribute to the development of a safe vaccine strategy. Allergists' expertise in proper diagnosis and treatment of allergic reactions is vital for the screening of high-risk individuals.

14.
SELECTION OF CITATIONS
SEARCH DETAIL